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Abstract 

A description is given of 4-connected nets with one 
kind of vertex in which the shortest rings containing 
each pair of edges are N-rings ( N > 4 ) .  Eleven 
uniform nets  (66 ) are identified; seven of these are 
believed to be new. A further thirteen nets with one 
type of vertex and without 3- or 4-rings are described; 
nine of these are also believed to be new 

Introduction 

4-connected nets play an important role in crystal 
chemistry, notably as structures of elements and 
covalently bonded crystals and as the basis of the 
structures of hydrates, framework silicates and related 
materials. Considerable effort has been spent on 
enumerating possible structures and on characterizing 
their topologies; recent contributions that provide 
references to earlier work are those of Bosmans & 
Andries (1990) and Hansen (1990). In this series, 
some nets with all nodes congruent (uninodal) are 
described and analyzed topologically as a prelude to 
the development of a more complete topological 
theory of 4-connected nets than presently exists. With 
some reasonable geometrical restrictions (discussed 
below), the number of possible uninodal 4-connected 
nets is finite and we believe we have identified many 
of them. One mativation for this work is the belief 
that if we can discover how nature puts together 
simple nets, we can design more complicated nets by 
replacing single vertices by clusters of vertices (see, 
for example, Hansen, 1990). 

Wells (1977) attached special significance to the 
uniform nets in which the shortest rings at every angle 
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are equal in length. For uniform 4-connected nets, 
the rings at the six angles common to a vertex are all 
6-rings (have six edges) and are symbolized 66. Wells 
in fact identified only three of these, of which two 
are the familiar diamond and lonsdaleite nets, and 
the third the structure of 3,-silicon. Eleven are 
described here; we believe that seven of them have 
not been described before. 

Most 4-connected nets found in crystal chemistry 
contain 3- or 4-rings. However, in addition to the 
uniform nets mentioned above, the familar nets of 
the quartz and NbO structures are examples of nets 
that contain only larger rings. Here we describe some 
other examples. 

Terminology 

A 4-connected net contains six angles defined by pairs 
of edges. Each angle has four others adjacent that 
share a common edge and one opposite that does not 
have a common edge. Each angle is contained in an 
N-circuit, which is a closed path (without retracing 
steps) of N edges from and returning to the reference 
vertex. A circuit is called a ring if, in addition, for 
every pair of vertices on the circuit, the path on the 
circuit between the vertices is a shortest path (i.e. 
there is no shortcut between them outside the circuit). 
Rings have been variously called 'fundamental 
circuits', 'primitive rings' and 'fundamental rings' by 
other authors. Goetzke & Klien (1991) have recently 
discussed nomenclature and different definitions used 
by different authors; their terminology is used here. 
For every net there is a finite number of rings for 
each vertex and their enumeration is of considerable 
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664 UNINODAL 4-CONNECTED 3D NETS. I 

interest (Marians & Hobbs, 1990; Stixrude & 
Bukowinski, 1990; Goetzke & Klien, 1991). 

A net is often (partially) characterized by a 
'Schl~fli' symbol that indicates the shortest circuit 
contained in each angle (Wells, 1977; Smith, 1977). 
Thus, if for the six angles these were 4-, 4-, 6-, 6-, 6- 
and 8-circuits, the symbol (here called a short symbol) 
would be 42.63.8. In this work we also give a related 
long symbol (O'Keeffe, 1991a) that is restricted to 
rings (as opposed to shortest circuits) and in which 
the angles are given as opposite pairs; thus if the 
edges are labeled a, b, c, d, the angles are grouped 
as (ab cd) (ac bd) (ad bc). The number of rings con- 
tained in each angle is given as a subscript if greater 
than unity. The hypothetical net referred to above 
might now have a symbol such as 4.6.4.62.8.85 (one 
of the 6-circuits in the short symbol being rejected as 
not a ring). It is also useful for recognition of a symbol 
Uu. Vo. Ww.Xx. Yy.Zz for the pairs of opposite angles to 
be ordered so that UuVvWwXxYyZz, considered as 
an integer written to some suitably large base,* be as 
small as possible. There are rare examples of nets 
that contain angles that do not contain any ring 
(O'Keeffe, 1991a). 

Another characteristic of a net is its coordination 
sequence (Brunner, 1979; Meier & Moeck, 1979). This 
is the sequence nk of kth neighbors, a kth neighbor 
in turn being one that is separated from the reference 
vertex by a shortest path of k edges. Coordination 
sequences are readily enumerated for quite large 
values of k (say 50) for structures once the neighbors 
of a vertex are identified. It is found in practice that 
the sequence for k -< 10 is adequate for most purposes. 
One use is for rapid computer recognition of a pos- 
sible topology in a structure as it transpires that only 
very rarely do different nets have the same coordina- 
tion sequence. The nets in this paper all have different 
coordination sequences that serve as useful 'finger- 
prints'. A useful measure of topological density is 

k 

pk = ~, n,/k3; (1) 
i=1  

we arbitrarily use Plo (lO00plo is the number of neigh- 
bors in the first ten coordination shells). 

Enumeration methods 

Based on purely topological criteria (connectivity), 
the number of uninodal 4-connected nets is surely 
very large. However, in application to crystal 
chemistry, a useful restriction is to those nets that 
can be realized geometrically with each vertex having 

* The number of smallest rings contained in an angle can exceed 
1000. 

only four equidistant nearest neighbors and with the 
lines joining these neighbors corresponding to the 
edges of the net. We call such nets realizable. The 
number of such realizable uninodal 4-connected nets 
is certainly finite (we believe it to be some hundreds). 
Some of these are not of great interest, however, as 
they represent just small distortions of nets of higher 
connectivity. We have eliminated these from con- 
sideration by a method described below. 

The nets were found in an empirical computer 
search. In the method used, a point was moved in 
small increments throughout the asymmetric unit of 
the unit cell of all the cubic, hexagonal, tetragonal 
and orthorhombic space groups in turn. All the 
equivalent points in the cell generated by the group- 
symmetry operations were then identified. The 
topology of the net defined by the four nearest neigh- 
bors of the initial point was then characterized by its 
coordination sequence as described above. 

If the net had a new coordination sequence, the 
next step was to allow the structure to relax to 
maximum volume subject to the constraint of equal 
edge lengths. If in that form there were still only four 
nearest neighbors of a given vertex and these corre- 
sponded to the edges of the net as originally identified, 
the net was retained. Nets consisting of rods or layers 
were identified by the volume increasing without limit 
and were eliminated. These criteria eliminated a lot 
of interesting topologies, but it was felt that the 
rejected nets were less likely to occur in crystal struc- 
tures (but for a counter-example, we cite net number 
23, described below, as an exception to the rule; it 
occurs in the CdSO4 structure). For some nets, the 
parameters were subsequently adjusted to maximize 
the next-nearest-neighbor distance (as indicated for 
the specific net below). 

For each orthorhombic space group, the calcula- 
tions involved examination of about 10 6 different 
combinations of axial ratios (b / a  and c~ a) and posi- 
tional coordinates (x, y and z), and took about a week 
on a VAX 3700 computer. As the orthorhombic space 
groups (five variables) yielded only ten new nets, the 
monoclinic and triclinic space groups (six and eight 
variables respectively) were not examined. 

No claim of completeness is made; indeed the 
criteria for selection given above are somewhat 
arbitrary and may exclude some nets of potential 
interest in crystal chemistry. It is possible (but rather 
unlikely) that two different nets could have the same 
coordination sequence and space group, which would 
result in our missing one of them. It is also possible 
that we missed some nets that are triclinic or mono- 
clinic in their most symmetrical forms, but no uni- 
nodal example of such a net is known. However, it 
should be remarked that we did not miss any pre- 
viously known uninodal net. Of the nets that were 
identified, over one-half of them do not appear to 
have been described before. 
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Table 1. Crystallographic data for uniform nets with edge length of  unity 

The parameters  are those which maximize the next-neares t -neighbor  distance, d2, except  for 10 and 11, which are the max imum-vo lume  
configuration,  r is the number  o f  vertices per unit volume.  In all cent rosymmetr ic  structures, the origin is chosen on a center. 

Net  Space group a, (b, c) (/~,) x, y, z r d 2 

1 Fd3m 4/31/2 1/8, 1/8, 1/8 0.650 1.633 
2 P63/mmc (8/3) 1/2, 8/3 1/3, 2/3, 1/16 0.650 1.633 
3 P6_t22 3.5369, 1.6507 0.1363, 0.4322, 0 0.671 1.381 
4 R3m 4.495, 1.504 0.1243, 2x, 1/12 0.683 1.504 
5 P4122 2.030, 1.414 0, 0.3258, 0 0.686 1.414 
6 la3d (32/3) t/2 3/8, 0, 1/4 0.689 1.528 
7 141/acd 4.060, 1.412 0.0871,0, 1/4 0.687 1.414 

2/(61/2 31/2 ) 8 la3 - (2 I/2 -- 1)/4, y = x, z = x 0.739 1.414 
9 Fddd 4.644, 3.061, 1.531 0.3057, 1/8, 1/8 0.735 1.442 

10 R3 2.6045, 3.6464 0.3764, 0.0737, 0.0598 0.842 1.246 
11 P31c 2.6133, 2.4733 0.3866, 0.0886, 0.0808 0.820 1.175 

Descriptions of uniform nets 

For each net we give, in Table 1, an arbitrary iden- 
tification number, a crystallographic description for 
equal edges of unit length, r = number of vertices per Net n 3 

unit volume and the next-nearest-neighbor distance, 1 24 
d E. Table 2 gives the coordination sequences nk for 2 25 
k < 10 and pl0. Table 3 gives the Schl/ifli symbol and 3 24 - -  4 25 
the numbers of rings at a vertex for each net. Note 5 26 
that as an N-ring has N vertices, the number of rings 6 26 
per vertex is 1 / N  times the number given here. 78 2627 
Further comments on the individual nets follow. 9 27 

10 27 
Nets 1 and 2: diamond and lonsdaleite. These are 11 27 

entirely familiar nets. We simply note that the 
diamond net is the only regular 4-connected three- 
dimensional net (with all vertices, edges and angles 
equivalent). It also has the lowest topological density 
of any uniform net. Simple analytical expressions for 
n k have been given before (O'Keette, 1991b). These 
nets (and all their polytypes) have symbol 
62.62 .62 .62 .62 .62 .  Net Zt 

1 2 
Net 6. This structure is known as the invariant 2 4 

lattice complex S*. It has been described and illus- 3 12 4 6 
trated elsewhere (O'Keette, 1991a). It is the only 5 4 
uniform net other than diamond with all edges 6 12 
equivalent (quasiregular). It occurs in nature as the 7 8 8 8 
Si positions in the garnet grossular (Ca3A12Si3Ol2) 9 4 
and as the Ag positions in Ag3AuTe2 (Frueh, 1959). 10 6 
The midpoints of the edges are positions 48(g) 11 12 
(1/8, y, 1 / 4 - y  etc.) of Ia3d with y=5/16--0 .3125.  
This suggests an attractive possible metastable struc- 
ture for SiO2 with Si in 24(d) and O in 48(g). The 
two parameters of the structure, a and y, can be 
determined from the Si-O bond length and the Si -O-  
Si bond angle. For these to be the same as in c~-quartz 
(Levien, Prewitt & Wiedner, 1980), a--9.989 A and 
y = 0.2771. The density is 91% that of quartz and the 
O-Si-O bond angles are 105.1 (2x) and 111.7 ° (4x). 

Net 8. This net is familiar as the ~/-Si structure and 
is illustrated by Wells (1977). The structural param- 
eters are determined by the requirement of equal edge 
lengths. 

Table 2. Numbers ofkth neighbors, nk,for uniform nets 

n I = 4 ,  /'/2 = 12 in every case. The net number  is the same as in 
Table 1. 

n4 n5 n6 ~7 ~8 n9 nl0 PI0 

42 64 92 124 162 204 252 0.980 
44 67 96 130 170 214 264 1.026 
40 64 96 134 176 221 272 1.043 
44 69 100 135 176 223 276 1.064 
48 74 104 144 186 234 292 1.124 
48 76 110 146 192 244 302 1.160 
46 72 106 148 194 248 308 1.164 
49 77 109 148 194 244 301 1.165 
50 77 112 152 200 252 312 1.198 
52 87 132 182 242 309 386 1.433 
52 87 132 185 250 317 392 1.458 

Table 3. Numbers of  rings meeting at a vertex in 
uniform nets and Z,, the number of vertices in the 

topological repeat unit 

The net number  is the same as in Table 1. 

Symbol N6 N8 Nlo N12 N14 

62.62.62.62.62.62 12 0 0 0 0 
62.62.62.62.62.62 12 0 0 0 0 
6.62.62.64.63.63 15 0 0 6 7 
6.62.62.63.62.63 13 0 10 0 0 
6.6.62.62.63.63 12 8 10 0 0 
6.6.62.62.62.62 10 0 0 0 0 
6.6.62.62-63-63 12 12 0 0 0 
6.62.6.62.6.62 9 12 15 0 0 
6.6.6.62.62.62 9 8 0 0 0 
6.6.6.62.62-62 9 0 10 0 0 
6.6.6.62.62.62 9 0 10 0 0 

Nets 3, 4, 5, 7 and 9. These nets are simply derived 
from planar 3-connected nets by replacing some of 
the edges by zigzag chains as illustrated in Figs. 1-5. 
Net 3 (Fig. 1) is derived from 4.6.12 by replacing the 
edges common to hexagons and dodecagons by zig- 
zags running parallel to c. Net 4 (Fig. 2) is similarly 
derived from 63 [compare also net 14 (Fig. 9)]. 

Nets 5 and 7 (Figs. 3 and 4) illustrate two ways in 
which the plane net 4.82 can be converted to uniform 
nets by replacing the edges between octagons by 
zigzags. Net 5 contains 41 helices of vertices (and has 
an enantiomorph with 43 helices), net 7 contains 41 



a n d  43 hel ices  in equa l  numbers .  It  m igh t  be no t ed  
tha t  these  nets  can  also be cons ide red  as m a d e  of  
p u c k e r e d  63 nets  [para l le l  to (110)]. In  Smi th ' s  (1977) 
no ta t ion ,  the  pa t t e rn  o f  l inkages  be tween  the  63 layers  
is SCCSCC.  With  vert ical  l inkages  be tween  the  layers ,  

4 5 

one  ob ta ins  the  well  k n o w n  net  o f  the a toms  in the  
/3-BeO s t ructure ,  net  no.  3 o f  Smi th  (1977). In  nets  
5 and  7, the  l inkages  b e t w e e n  the  63 layers  are ne i the r  
p e r p e n d i c u l a r  to the layers  no r  all para l le l  (cf. net  9 
be low) .  

5 
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Fig. 4. Net 7 shown as a projection on (001). Numbers are 
elevations in multiples of c/4. Double lines represent zigzags 
parallel to c. 

Fig. 1. Net 3 shown as a projection on (001). Numbers are 
elevations in multiples of c/6. Double lines represent zigzags 
parallel to e. 

Fig. 2. Net 4 shown as a projection on (001) of the hexagonal cell. 
Elevations are shown by successively darker shading: c/12 (open 
circles), 3c/12, 5c/12, 7c/12, 9c/12, 11c/12 (filled circles). 
Double lines represent zigzags parallel to e. Fig. 5. Net 9 shown as a projection on (001). Numbers are 

elevations in multiples of c/8. Double lines represent zigzags 
parallel to e. 

08 5 8 ~  

Fig. 3. Net 5 shown as a projection on (001). Numbers are 
elevations in multiples of c/4. Double lines represent zigzags 
parallel to e. 

Fig. 6. Net 11 shown as a projection on (001). Numbers are 
elevations in multiples of c/100. Broken lines represent edges 
to vertices with z < 0 or z > 1. 



M. O 'KEEFFE AND N. E. BRESE 667 

Table 4. Crystallographic data for non-uniform nets without 3- or 4-rings 

For  cen t rosymmet f i c  s tructures,  the or igin is chosen  on  a center.  

Net Space  g roup  a, c (A)  x, y, z r d 2 

12 R3c 5.3068,1.3501 0, 0.4305,1/4 0.547 1.268 
13 P6122 3.0621, 1.3501 0.4305, 2x, 1/4 0.547 1.268 
14 P6t22 2.5255,1.6027 0.3816, 0, 0 0.678 1.466 
15 P6122 2.2858, 2.2115 0.2348, 2x, 1/4 0.600 1.595 
16 I4~a 2.8818, 2.5275 0.0888, 0.1010, 3/8 0.762 1.414 
17 Im3m 2.0 0 ,1 /2 ,1 /2  0.750 1.414 
18 P62_22 1.6330, 1.7321 1/2, 0, 0 0.750 1.414 
19 R3c 4.6141, 2.2680 0.2309, 0.0435, 0.0433 0.861 1.180 
20 R3c 4.4420, 2.6648 0.1186, 0.5331, 0.0632 0.791 1.290 
21 P422t2 1.8373, 2.6685 0.1342, 0.2632, 0.1765 0.888 1.086 
22 R3c 3.0984, 2.6833 1/4, 0,1/4 0.807 1.265 
23 P42/mmc 1.0, 2.0 0, 0, 0 1.0 1.0 
24 P6222 1.0, 3.0 0, 0, 0 1.155 1.0 

Net 9 (Fig. 5) is of interest because of its close 
relationship to the diamond and lonsdaleite nets. The 
structure can be considered as made up of puckered 
63 layers parallel to {110} with additional edges con- 
necting the layers alternating up and down. In Smith's 
(1977) notation, the pattern of linkages between the Net  n 3 n 4 n 5 n6 n7 n8 n9 rllO Rio 

63 layers is CCCCCC as in diamond and lonsdaleite. 12 22 40 66 98 126 168 216 262 1.014 
13 22 40 66 102 128 168 218 268 1.028 

T h e  d i f f e r e n c e  b e t w e e n  those s t r u c t u r e s  a n d  t h e  Fddd  14 26 46 70 100 136 178 224 276 1.072 

structure is that the linkages in the latter are no longer 15 26 44 72 104 138 178 228 282 1.088 
perpendicular to the layer but canted in two different 16 25 50 75 106 150 190 241 303 1.156 

17 28 50 76 110 148 194 244 302 1.168 
directions. O n e  c a n  readily c o n s t r u c t  c o h e r e n t  i n t e r -  18 30 52 80 116 156 204 258 318 1.230 

growths of the three structures with {111} of diamond 19 29 58 88 124 169 222 280 346 1.332 
or (001) of lonsdaleite parallel to {110} of the Fddd 20 29 54 86 128 173 228 291 360 1.365 

21 30 56 89 129 177 233 295 364 1.389 
structure. 22 26 50 86 128 182 240 310 382 1.420 

23 30 58 94 138 190 250 318 394 1.488 
24 36 72 122 188 264 354 456 570 2.078 Nets 10 and 11. These nets are closely related and 

represent yet another way of deriving uniform nets 
from 63 . The 63 nets are considerably distorted and 
the linkages between them are far from vertical as 
illustrated for net 11 in Fig. 6. Net 10 is essentially a 
three-layer version of the two-layer net 11. 

Descriptions of non-uniform nets 

We follow a similar procedure for the description of 
non-uniform nets. For each net we give, in Table 4, 
an arbitrary identification number, a crystallographic 
description for equal edges of unit length, r = number 
of vertices per unit volume and the next-nearest- 
neighbor distance, d2. Table 5 gives the coordination 
sequences nk for k < - 10 and Pl0. Table 6 gives the 
Schliifli symbol and the numbers of rings at a vertex 
for each net. Further brief comments on the individual 
nets follow. Nets 18 and 19 are familiar as those of 
the Si atoms in quartz and of all the atoms in NbO, 
respectively: they need no further comment other 
than to remark that they are quasiregular and the 
only uninodal nets we know that a re  64.82. 

Nets 12, 13 and 14. These nets continue the theme 
of deriving nets from plane nets by replacing edges 
by zigzags. In nets 12 and 13 (Figs. 7 and 8), the 
plane net is now 3.122 and the edges between 

Table 5. Numbers ofkth neighbors, nk,for non-uniform 
nets 

nl = 4, n 2 = 12 in every case. The  net n u m b e r  is the s ame  as in 
Tab le  4. 

dodecagons are replaced by zigzags. The triangles of 
the plane nets now become helices, of one hand in 
net 13 and of both hands in net 12. Net 14 (Fig. 9), 
derived from 63, is very closely related to net 4 (Fig. 2). 

Net 15. This net (Fig. 10) illustrates a second way 
of generating three-dimensional nets from plane nets. 
In the 4-connected plane net 3.4.6.4, the hexagons 
and triangles are converted into helices (which must 
all be of the same hand) to generate a three- 
dimensional structure. This procedure is analogous 
to the derivation of the quartz and NbO nets from 
3.6.3.6 and the diamond net from 44 (Wells, 1977; 
Smith, 1979). 

Net 16. This net (Fig. 11) is of interest because of 
its close resemblance to that of Si in the keatite form 
of SiO2 (the keatite net is also found in a polymorph 
of Ge and in H20). It is one of or/ly five uninodal 
nets that we have identified with shortest rings that 
are 5-rings. 

Nets 19 to 24. Nets 19 to 22 are presented in their 
maximum-volume forms in Table 4. Nets 19 to 21 
provide further examples of 65.8 nets and net 22 (Fig. 
12) provides a rare example of a net in which all 
shortest rings are odd. This last net also has a very 
simple description using a primitive rhombohedral  
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T a b l e  6. Numbers of  rings meeting at a vertex in non-uniform nets 

The net number is the same as in Table 4 and Z, is the number of vertices in the topological repeat unit. 'Short' and 'long' refer to the 
two ways of giving Schl/ifli symbols discussed in the text. '0o' in the symbol means that the angle in question does not contain a ring. 

Net Z t Short Long Ns N6 N7 N8 N9 Nl0 N12 N13 
12 6 5 4 . 6 2  5.5.5.52.121o.121o 5 0 0 0 0 0 40 0 
13 6 54.62 5.5.5.52.12.12 5 0 0 0 0 0 12 13 
14 6 6 5 . 8  62.62.62.85.63.63 0 12 0 8 0 0 0 0 
15 6 55.8 5.5.5.5.5.84 5 0 0 8 0 0 0 0 
16 8 54.82 5.52.5.8.5.8 5 0 0 4 0 5 0 0 
17 3 6 4 . 8 2  62.62.62.62.82.82 0 8 0 8 0 0 0 0 
18 3 6 4 . 8 2  62.62.62.62.87.87 0 6 0 40 0 0 0 0 
19 12 65.8 6.62.6.62.6.84 0 7 0 12 0 35 0 a 
20 12 6s.8 6.62.6.62.6.84 0 7 0 24 0 0 0 0 
21 8 65.8 6.6.6.62.6.85 0 6 0 32 0 0 0 0 
22 8 55.8 5.5.5.5.5.9 5 0 0 0 9 10 0 0 
23 2 65 .8 6.6.6.6.62.0o 0 6 0 24 0 0 0 0 
24 3 7 s . 9  72.o0.73.73.73.73 0 0 14 0 0 0 0 0 

ce l l  f o r  R3c: a = 2 a n d  a = cos  -~ ( - 1 / 5 ) ,  v e r t i c e s  in  
6 ( e )  w i t h  x = 0. H a l f  o f  t h e  e d g e s  f o r m  l i n e a r  r o d s  
r u n n i n g  in  t h r e e  o f  t h e  f o u r  d i r e c t i o n s  o f  b .c .c .  
c y l i n d e r  p a c k i n g  ( O ' K e e f f e  & A n d e r s s o n ,  1977) .  I t  is 

a l so  c l o s e l y  r e l a t e d  to  a 5 - c o n n e c t e d  n e t  ( o b t a i n e d  
b y  i n s e r t i n g  t h e  f o u r t h  r o d )  d e s c r i b e d  b y  W e l l s  (1977 ,  
F ig .  16.28) .  

N e t s  23 a n d  24 in  t h e i r  m a x i m u m - v o l u m e  f o r m s  
h a v e  v e r t i c e s  o n  a p r i m i t i v e  c u b i c  l a t t i c e  (s ix  n e a r e s t  

n e i g h b o r s )  a n d  a p r i m i t i v e  h e x a g o n a l  l a t t i c e  ( e i g h t  
n e a r e s t  n e i g h b o r s ) ,  r e s p e c t i v e l y .  T h e y  h a v e  b e e n  

d e s c r i b e d  b e f o r e  ( O ' K e e f f e ,  1991 a ) a n d  a r e  o f  i n t e r e s t  
b e c a u s e  o f  t h e  s m a l l  n u m b e r s  o f  v e r t i c e s  ( t w o  a n d  
t h r e e ,  r e s p e c t i v e l y )  in  t h e  t o p o l o g i c a l  r e p e a t  u n i t .  N e t  

Fig. 7. Net 12 shown as a projection on (001). Numbers are 
elevations in multiples of c/12. Double lines represent zigzags 
parallel to e. 

Fig. 8. Net 13 shown as a projection on (001). Numbers are 
elevations in multiples of c/12. Double lines represent zigzags 
parallel to c. 

Fig. 9. Net 14 shown as a projection on (001). Numbers are 
elevations in multiples of c/6. Double lines represent zigzags 
parallel to ¢. 

Fig. 10. Net 15 shown as a projection on (001). Numbers are 
elevations in multiples of c/12. 
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23 occurs in the CdSO4 structure (O'Keeffe, 1991a). 
Net 24 is also of interest as being possibly the densest 
4-connected net in the topological sense; it might be 
considered uniform in the sense that the rings are all 
7-rings, but note that one angle is not contained on 
any ring. 

Discussion 

We are surprised, in view of the long interest in 
4-connected nets, that some of the simpler nets 
described here do not appear to have been recognized 
before. This may be in part due to the prevalence of 
screw axes and glide planes and the absence of mirror 

i 

Fig. 11. Net 16 shown as a projection on (001). Open circles are 
at z = 0, lightly shaded at z = 1/4, darker shaded at z = 1/2 and 
filled circles are at z = 3/4. 

planes in some of their symmetries. Two of the new 
nets have only four vertices in the repeat unit and a 
further six have only six in the repeat unit. Pleasing 
models of most of the nets are readily made with 
tetrahedral vertices and plastic tubing as edges, 
although net 22 is better made using four non- 
coplanar spokes of an octahedral 'star'. It is an inter- 
esting challenge either to identify these nets in crystal 
structures (this is most readily done using the coordi- 
nation sequences) or to explain why they should not 
OCCUr. 

We have reported all the rings in the nets under 
discussion as these are considered most relevant to 
discussions of topology (Stixrude & Bukowinski, 
1990). However, Goetzke & Klien (1991) further 
define 'strong rings', which are rings that cannot be 
decomposed into a sum of smaller rings. Nets 1, 2, 4 
and 6 contain only six-membered strong rings and 
might be termed 'strongly' uniform. Uniform nets that 
can be realized with shortest distances corresponding 
to edges (realizable) are all 66 , but we know of no 
proof that this must always be the case. Net 24 shows 
that if we remove the restriction to realizable nets, a 
net with only 7-rings (which are of course strong 
rings) exists. The chlorine hydrate net (Wells, 1977) 
contains vertices 56 , but the two other kinds of vertex 
in the structure are 5s.6 and 54.62. 

This work was supported by a grant (DMR 
8813524) from the National Science Foundation. 
NEB acknowledges a graduate fellowship also from 
the NSF. 

Fig. 12. Net 22 shown as a projection on (001) of the hexagonal 
cell. Elevations are shown by successively darker shading: c~ 12 
(open circles), 3 c~ 12, 5 c~ 12, 7 c~ 12, 9 c~ 12,11 c~ 12 (filled circles). 
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